Synthesis and Characterization of Molybdenum Back Contact Using Direct Current-Magnetron Sputtering for Thin Film Solar Cells
نویسندگان
چکیده
In present work, we report synthesis of molybdenum (Mo) thin films by direct current (DC)-magnetron sputtering method. The structural, optical, morphological, and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evi d ent that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-tosubstrate distance preferred orientation of Mo crystallites changes from (211) to (110) and its size decreases. The field emission scanning electron microscope (FE-SEM) analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at higher target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-tosubstrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.
منابع مشابه
Aluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells
In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi) back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the ...
متن کاملIn Situ and Ex Situ Studies of Molybdenum Thin Films Deposited by rf and dc Magnetron Sputtering as a Back Contact for CIGS Solar Cells
This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Repository Citation Aryal, K. P.; Khatri, H.; Collins, R. W.; and M...
متن کاملDeposition of Al/Cu Multilayer By Double Targets Cylindrical DC Magnetron Sputtering System
A cylindrical direct current magnetron sputtering coater with two targets for deposition of multilayer thin films and cermet solar selective surfaces has been constructed. The substrate holder was able to rotate around the target for obtaining the uniform layer and separated multilayer phases. The Al/ Cu multilayer film was deposited on the glass substrate at the following conditions: Working g...
متن کاملSIGNIFICANCE OF SUBSTRATES AND BUFFER LAYERS IN CdTe THIN FILM SOLAR CELL FABRICATION
CdTe is considered as a viable absorber material for the thin film solar cell because of its excellent material characteristics as well as simple, low cost manufacturability. Despite a theoretical 29% efficiency prediction of the cell, its high work function and coefficient of thermal expansion (CTE) have limited its efficiency to around 17%. One of the remedies of the problem is using a pseudo...
متن کاملNano-structured morphological features of pulsed direct current magnetron sputtered Mo films for photovoltaic applications
Historically, molybdenum thin films have been used as the back contact for Cu(In,Ga)Se2 based solar cells and as such the properties of these layers play an important role in the overall cell structure. This paper describes the production of molybdenum films using pulsed d.c magnetron sputtering from compressed molybdenum powder targets. The films were deposited at different substrate temperatu...
متن کامل